Ionothermal Synthesis, Crystal Structure, and Magnetic Study of $Co₂PO₄OH$ Isostructural with Caminite

Guangmei Wang,[†] Martin Valldor,[⊥] Eike T. Spielberg,[†] and Anja-Verena Mudring*^{,†,‡,§}

 † Inorganic Chemistry III—Materials Engineering and Characterization, Ruhr-Universität Bochum, D-4[478](#page-4-0)0 Bochum, Germany

‡ Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States

§ Critical Materials Institute, Ames Laboratory, Ames, Iowa 50011, United States

[⊥]Physics of Correlated Matter, Max-Planck-Institute for Chemical Physics of Solids, D-01187 Dresden, Germany

S Supporting Information

[AB](#page-4-0)STRACT: [A new framew](#page-4-0)ork cobalt(II) hydroxyl phosphate, $Co₂PO₄OH$, was prepared by ionothermal synthesis using 1-butyl-4-methyl-pyridinium hexafluorophosphate as the ionic liquid. As the formation of $Co₂PO₄F$ competes in the synthesis, the synthesis conditions have to be judiciously chosen to obtain wellcrystallized, single phase Co_2PO_4OH . Single-crystal X-ray diffraction analyses reveal Co₂PO₄OH crystallizes with space group I4₁/amd (a = b = 5.2713(7) Å, c = 12.907(3) Å, $V = 358.63(10)$ Å³, and $Z = 4$). Astonishingly, it does not crystallize isotypically with Co_2PO_4F but rather isotypically with the hydroxyl minerals caminite $Mg_{1,33}[SO_4(OH)_{0.66}(H_2O)_{0,33}]$ and lipscombite Fe_{2-y}PO₄(OH) (0 ≤ y ≤ 2/3). Phosphate tetrahedra groups interconnect four rod-packed face-sharing $\frac{1}{\infty}$ {CoO_{6/2}} octahedra chains to form a three-dimensional framework structure. The compound Co_2PO_4OH was further characterized by powder X-ray diffraction,

Fourier transform−infrared, and ultraviolet−visible spectroscopy, confirming the discussed structure. The magnetic measurement reveals that Co₂PO₄OH undergoes a magnetic transition and presents at low temperatures a canted antiferromagnetic spin order in the ground state.

■ INTRODUCTION

Phosphorus is the 10th most abundant element on earth and tends to be concentrated in igneous rocks. $¹$ Naturally occurring</sup> phosphate minerals have rich crystal chemistry; the major constituents of phosphorite are the mi[ne](#page-4-0)rals of the apatite θ group.² A large number of structurally and chemically diverse synthetic metallophosphates 3 are extensively studied with respec[t](#page-4-0) to a wide range of applications, such as ion exchange, 4 catalysis,⁵ adsorption, δ δ δ nonlinear optics,⁷ and battery materials.⁸

Si[n](#page-4-0)ce cobalt phosphate was used as a component in semicon[d](#page-4-0)uctive glass[es](#page-4-0),⁹ such materials [h](#page-4-0)ave attracted renewed interest in the field of ion-selective microelectrodes, catalysts, battery electro[d](#page-4-0)es, and glass materials.¹⁰ Furthermore, cobalt phosphate has been studied as a solid-state catalyst in the solar light-induced oxidation of water to O_2 .^{10b} Current cobalt phosphates are being extensively studied as cathode materials for rechargeable lithium ion batteries to inc[rea](#page-4-0)se energy storage and voltage output.^{10c}

In the field of open-framework metallophosphates, cobalt phosphates are of [part](#page-4-0)icular interest as $Co²⁺$ is one of the few transition-metal cations that not only can adopt an octahedral but also a tetrahedral coordination environment and thus is able to substitute silicon or phosphorus in silicates and phosphates. The incorporation of cobalt cations into zeolites can improve the catalytic performance of the material.¹¹ In addition, cobalt phosphates are of interest because of their

magnetic properties. 12 Since the first amino-templated tetrahedral open framework cobalt phosphate $[C_2H_{10}N_2]$ -[CoPO4] was report[ed](#page-5-0) in 1994, much attention has been paid to this class of compounds.¹³

Recently, our group successfully utilized ionic liquids (ILs) in the synthesis of metal, meta[l](#page-5-0) fluoride, and metal oxide nanomaterials for energy-related applications, for example, in catalysis or photonic materials.¹⁴ At the same time, we have explored a wide range of ILs with different cations and anions in the synthesis of layered and f[ram](#page-5-0)ework alumophosphates,¹⁵ a new aluminum fluoride hexahydrate, a new open-framework iron borophosph[at](#page-5-0)e,¹⁶ and a manganese borophosphate, $\text{KMnBP}_2\text{O}_7(\text{OH})_2$.¹⁷ The advantage of tetrafluoroborate or hexafluorophosphate [io](#page-5-0)nic liquids in the synthesis of metal phosphates is that [su](#page-5-0)ch ionic liquids can not only serve as the solvent and template but also as the mineralizer, because of the release of fluoride anions during the reaction.

We describe herein how this process can be used to prepare, by a judicious choice of the reaction parameters, highly crystalline single-phased $Co₂PO₄OH$, whose magnetic susceptibility will be described.

Received: December 4, 2013 Published: March 5, 2014

EXPERIMENTAL SECTION

Syntheses. Co_2PO_4OH is prepared under ionothermal conditions using the IL 1-butyl-4-methylpyridinium hexafluorophosphate $[C_4mpy][PF_6]$ as the solvent. In a typical reaction, a mixture of cobalt(II) acetate tetrahydrate $(Co(OAc)₂·4H₂O, 98%, ACROS)$, phosphoric acid (H₃PO₄, 85%, J. T. Baker), and $[C_4mpy][PF_6]$ (99%, Merck) is reacted in a 3 mL Teflon-lined stainless steel autoclave at 200 °C for 7 d, followed by cooling to room temperature. The products were filtered off by suction, washed with deionized water and acetone, and dried at 60 °C for 1 d. Phase purity of the product was confirmed by the agreement between the experimental powder X-ray diffraction (PXRD) patterns and the simulated patterns based on the single-crystal structure analysis (Supporting Information, Figure S1).

Single-Crystal Structure Determination. A suitable single crystal of Co₂PO₄OH with dimensions of 0.12 \times 0.02 \times 0.02 mm was selected for single-crystal X-ray diff[raction](#page-4-0) [\(SXRD\)](#page-4-0) analysis. The data were collected at ambient temperature using graphitemonochromated Mo Kα radiation on an Image Plate Diffraction System, IPDS I (Stoe, Darmstadt, Germany). The data were corrected for Lorentz and polarization effects. Data correction was carried out with the program X-RED.¹⁸ A face-indexed numerical absorption correction $(X-SHAPE)$ was applied.¹⁹ The structure was solved by direct methods and refined [by](#page-5-0) full-matrix least-squares techniques with the SHELXTL crystallographic softw[are](#page-5-0) package.²⁰ The Co, P, and O atoms could be unambiguously located. See Supporting Information for experimental details on the crystal struct[ure](#page-5-0) determination of $Co₂PO₄OH$ and for further details of [the crystal structure](#page-4-0) investigations.

Characterizations. PXRD data were collected on an image plate-G670 Guinier camera (Huber, Rimsting, Germany) with Mo Kα radiation $\lambda = 0.71073$ Å. FT-IR spectra were measured on a Bruker Alpha spectrometer with KBr pellets in the range of 4000–400 cm⁻¹. . Ultraviolet−visible (UV−vis) absorption spectra were measured on an Agilent Cary 5000 spectrometer on a solid sample, using the internal diffuse reflection accessory. To avoid saturation, samples were ground with a 10-fold excess of $BaSO₄$ prior to the measurements. The reflectance spectrum recorded of pure optical-grade BaSO₄ was used as reference.

Magnetism. The magnetic susceptibility of $Co₂PO₄OH$ was measured in a MPMS-XL7 apparatus (Quantum Design) on powder samples placed in a polycarbonate capsule and fixed with high purity inert wax to prevent the powder from moving under the influence of the applied high magnetic fields. Both the direct current (dc) and alternating current (ac) magnetic susceptibilities (χ) were measured. For determination of the dc magnetic susceptibility, a field of 0.1 T was used for the temperature-dependent measurement, and fields up to 7 T were used for the isothermal magnetizations at temperatures of 2, 5, 10, 20, and 30 K. The driving field in the ac measurements was 2 Oe, with frequencies ranging from 1 to 1000 Hz.

■ RESULTS AND DISCUSSION

Synthesis and Characterization. The original objective of our experiments was to produce complex cobalt hydroxyphosphates. Surprisingly, we obtained two different compounds, Co_2PO_4OH (1) and Co_2PO_4F (2), under quite similar synthesis conditions, using the IL 1-buty-4-methylpyridinium hexafluorophosphate $[C_4mpy][PF_6]$ as the solvent and mineralizer. It was found that $Co₂PO₄OH (1)$ crystallizes in the space group $I4_1$ /amd, isotypic with the minerals caminite $(\mathrm{Mg_{1.33}[SO_4(OH)_{0.66}(H_2O)_{0.33}}])$ and lipscombite $Fe_{2-y}PO_4(OH)$ (0 ≤ y ≤ 2/3).²¹ The competing phase, $Co_2PO_4F (2),²²$ crystallizes isostructurally with triplite $(Mn_2PO_4F)^{23}$ with the space gro[up](#page-5-0) $C2/c$. To elucidate the mechanism of [fo](#page-5-0)rmation of Co_2PO_4X (X = OH, F), a systematic [syn](#page-5-0)thesis study was carried out. We explored the variation of various parameters such as stoichiometric ratios and concentrations of the starting materials. Table 1 summarizes the initial mixture compositions, crystallization conditions, and the phases obtained. By a careful choice of the reaction parameters we managed to obtain monophasic $Co_2PO_4OH (1)$.

Pure Co_2PO_4OH (1) could be obtained by heating a molar composition of $Co(OAc)_{2}·4H_{2}O$ (OAc = acetate), $H_{3}PO_{4}$, and 0.75 H₃BO₃ in $[C_4mpy][PF_6]$ in a ratio of 1:1:0.75:1 at 200 °C for 7 d (sample S1). Upon halving the amount of the IL $[C_4mpy][PF_6]$, a mixture of Co_2PO_4OH (1) and Co_2PO_4F (2) was obtained (sample S2). When further decreasing the amount of the IL, a new, unknown phase of poor crystallinity formed, and $Co₂PO₄OH$ (1) could no longer be observed (sample S3). When doubling the amount of $[C_4mpy][PF_6]$, $Co₂PO₄OH$ (1) was obtained along with an amorphous pink powder (sample S4). When the amount of $Co(OAc)₂·4H₂O$ was increased, biphasic mixtures of $Co₂PO₄OH$ (1) and $Co₂PO₄F (2) formed (sample S5), with (1) being dominant$ for increases of up to 1.5 times the original amount and (2) becoming the prevalent species thereafter (sample S6). Increases of up to double the amount of H_3PO_4 still led to pure $Co₂PO₄OH (1)$ (sample S7), whereas decreases gave both Co_2PO_4OH (1) and Co_2PO_4F (2) in biphasic samples (sample S8). The initial pH of the starting mixtures was adjusted by H_3BO_3 . Co_2PO_4OH (1) with good purity could be obtained with amounts of H_3BO_3 between 0 and 0.75 mmol (sample S9). However, when H_3BO_3 levels were increased from 0.75 to 1 mmol, pure $Co₂PO₄F(2)$ was obtained (sample S10).

The thermal stability of $Co₂PO₄OH$ in air was determined using thermal gravimetric analysis, and the results are shown in

Figure 1. (left) Perspective view of the 3D framework structure of Co_2PO_4OH (1) along the [100] direction. (right) A view along the [111] direction showing the rod-packing of face-sharing ${}^1_\infty\{CoO_{6/2}\}$ octahedral chains parallel to [100] (blue) and [010] (yellow).

Supporting Information, Figure S2. $Co₂PO₄OH$ remains stable under ambient conditions up to 400 °C, while Co_2PO_4F is [stable up to 1000](#page-4-0) °C.

Crystal Structure. Single-crystal structure analysis reveals that $Co₂PO₄OH$ crystallizes in the tetragonal unit cell with space group $I4_1$ /amd (No. 141). The cell parameters are $a = b$ $= 5.2713(7)$ Å, $c = 12.907(3)$ Å, $V = 358.63(10)$ Å³, and $Z = 4$. For further structural details such as an atomic coordinate list and selected bond lengths and angles see Supporting Information. The structure of $Co₂PO₄OH$ is characterized by a three-dimensional (3D) framework of ${CoO_4(OH)_2}$ [octahedra an](#page-4-0)d monophosphate $[PO_4]$ tetrahedra. The asymmetric unit of the crystal structure contains four crystallographically distinct atoms, one cobalt atom, one phosphorus atom, one oxygen atom, and one hydroxyl ion (Supporting Information, Figure S3). The cobalt atom is located on an inversion center (Wyckoff position 8 c) and has a[n octahedral](#page-4-0) [coordination](#page-4-0) to four oxygen atoms located on a mirror plane (Wyckoff position 16 h) and two hydroxyl ions located on the cross point of an inversion axis $\overline{4}$, a mirror plane, and a 2-fold axis (Wyckoff position 4 a). The Co(1)–O(1) and Co(1)– O(1H) bond lengths are 2.064(6) Å and 2.0832(3) Å, respectively. The cis O−Co−O bond angles range from 82.6(2) \degree to 97.4(2) \degree , whereas the trans angles are 180 \degree . The phosphorus atom is located on the cross point of an inversion axis $\overline{4}$, a mirror plane, and a 2-fold axis (Wyckoff position 4 b), and is involved in eight P−O−Co bonds via four tribridging oxygen atoms. The phosphate tetrahedra are quite regular, with P−O bond distances of 1.510(8) Å and with O−P−O angles varying from $108.7(7)$ to $109.9(4)$ °. All the oxygen atoms in the structure are three-coordinated bridging atoms, which lead to Co−O−Co, Co−O(H)−Co, and P−O−Co linkages.

 Co_2PO_4OH consists of chains of face-sharing ${}_{\infty}^{1}$ {CoO_{6/2}} octahedra along [100] and [010] connected by phosphate groups as shown in Figure 1. The $CoO₄(OH)₂$ octahedra are connected to each other through two $O(1)$ and one $O(1H)$ atoms forming face-sharing chains along the a and b axes (Figure 1, right). These face-sharing cobalt octahedra chains are linked together via tribridging O(1H) atoms forming a simple 3D rod-packing structure, following the concept of O'Keeffe and Andersson, 24 with six-membered rings along the *a* and *b* axes. Phosphate tetrahedral groups interconnect four of these $CoO₄(OH)₂$ o[cta](#page-5-0)hedra chains to generate a 3D framework.

FT-IR Spectroscopy. An FT-IR spectrum for Co_2PO_4OH recorded in the region of 4000–400 cm^{-1} was collected to confirm the presence of Co−O−H moieties (Figure 2). The

Figure 2. FT-IR spectrum of $Co₂PO₄OH$ (1) measured with KBr pellets in the range of 4000–400 cm⁻¹. The spectrum shows bands caused by Co−O−H moieties and PO4 groups discussed in the text.

peak observed at 3527 cm⁻¹ can be attributed to the stretching vibration of the bridging −OH group of the octahedral $CoO₄(OH)₂$. Moreover, it is possible to observe another weak and broad band at around 3404 cm^{−1}, which is assigned to stretching vibrations of Co−O−H groups as was shown in $[Co_{1.7}Mn_{0.3}(OH)PO_4]$ and $Co_2(OH)(PO_4)_{1-x}(AsO_4)_x$ (0 ≤ x \leq 1).²⁵ The two broad absorption bands in the neighborhood of 2891 and 2512 cm[−]¹ are frequently interpreted as a doublet prod[uce](#page-5-0)d by the O(1H)−H···O(1) stretching vibration split by proton tunneling between two equilibrium positions along the O−O axis $(d_{O(1H) \cdots O(1)} = 2.7379(89)$ Å).²⁶

The peak at $889~{\rm cm}^{-1}$ is assigned to the bridging −OH in the Co-OH-Co bending vibration²⁷ [as](#page-5-0) was shown in $NaCo₃(OH)(PO₄)₂(1/4)H₂O²⁸$ These large absorption bands together with the weak peak at 1632 cm^{-1} indicate the presence of OH groups in the $Co₂PO₄OH$ (1) structure.^{25a} The bands at around 1114 cm^{-1} and 1025 cm^{-1} are attributed to the asymmetric stretching vibration of the phosph[ate](#page-5-0) tetrahedra. The bands below 600 cm^{-1} are attributed to the deformation vibrations of O−P−O and can be probably coupled to the corresponding asymmetric stretching modes of the cobalt oxygen bonds.^{25a}

UV−visible Absorption Spectroscopy. The UV−vis absorption spectrum of $Co₂PO₄OH$ (1) was recorded on a powder sample diluted by a 10-fold excess of BaSO₄ (Figure 3).

Figure 3. UV−vis absorption spectrum, measured in reflection on a powder sample of Co_2PO_4OH (1) ground with a 10-fold excess of BaSO4. The arrows indicate the band positions used for further evaluation (see text).

As expected for d^7 Co²⁺ in an octahedral-like coordination, three major transition bands are visible: the first one at 6860 cm[−]¹ , which is split into two lines, the second one at 14 390 cm[−]¹ , and the third one at 18 550 cm[−]¹ with a weak shoulder at 20 900 cm[−]¹ . This splitting can be explained by a Jahn−Teller distortion: reducing the symmetry from O_h to D_{4h} splits the T_{1g} levels into A_{2g} and E_g and the T_{2g} levels into B_{2g} and E_g .

Assuming purely octahedral environment, evaluation using Tanabe–Sugano diagrams for a d⁷ system yields a Racah parameter of 850 cm^{−1}. This value is reduced to about 77% of the free ion value (1115 cm[−]¹) ²⁹ due to the nephelauxetic effect and is therefore well within the expected range. With this value a ligand-field splitting of 780[0 c](#page-5-0)m[−]¹ can be deduced.

Magnetism. Starting from the paramagnetic range observed around room temperature, the data is well-described by Curie− Weiss (CW) behavior (lower inset, Figure 4). From the CW fit a magnetic moment of 4.71 μ_B per C_0^2 ion is obtained, which is within expectations. For a spin-only $S = 3/2$ (d^7, Co^{2+}) a magnetic moment of 3.87 μ_B is obtained, and for a Co²⁺ with full orbital contribution $(L + S = J)$, the value can reach 5.2 μ_B . Hence, Co^{2+} in Co_2PO_4OH has a significant orbital contribution (L) to the magnetic moment, but L is not fully evolved. The extracted Curie–Weiss constant (Θ_{CW} = −49.7 K) is negative, pointing to predominant antiferromagnetic interactions in the spin ground state. All of these observations agree with what has been measured for orthorhombic $Co₂PO₄OH³⁰$ but the tetragonal modification exhibits other magnetic features at lower temperatures. As judged from both dc (Figure [4\)](#page-5-0) and ac magnetic susceptibility data (upper inset Figure 4), the first magnetic anomaly starts to set in around 20 K. Note, the tetragonal modification is clearly different from the orthorhombic as the spin ordering at 71 K is missing here.³⁰ Below 20 K, the χ suddenly increases, indicating an emerging ferromagnetic spin component. Note that our tetrago[nal](#page-5-0) modification has a significantly larger molar susceptibility below 20 K compared to the orthorhombic one, 30 suggesting that a relatively strong spin canting is present in the antiferromagnetic state in tetragonal $Co₂PO₄OH$. The differ-

Figure 4. Magnetic susceptibility (χ) of tetragonal $Co_2(PO_4)(OH)$ as function of temperature, displaying both field-cooled and zero-fieldcooled data. The lower inset is a magnification of χ^{-1} at high temperatures including a Curie−Weiss fit (dashed line) together with the values obtained from that fit. Both real (χ') and imaginary (χ'') parts of χ are shown in the upper inset, where field driving frequency was increased from 1 to 1000 Hz, as indicated with a thin arrow close to the maximum in χ' .

ence between the field cooled (FC) and zero-field cooled (ZFC) data agrees well with a noticeable imaginary part of χ (upper inset, Figure 4) and indicates that magnetic domains are formed. The observed spin domains can be explained by examining the isothermal magnetizations performed at several different temperatures (Figure 5). At 30 K, the polarization at

Figure 5. Magnetization as function of magnetic field (B) at several different temperatures, as indicated close to the corresponding curve. The upper-left curves represent the suggested magnetization anisotropy at 2 K, as discussed in the text for a theoretical single crystal. Both lower-right insets are structural motifs of tetragonal Co2PO4OH with a suggested magnetic structure with black arrows and the magnetically induced states with **B** along c (gray arrows) and b (purple arrow).

highest field is no doubt weaker than at 20 K and below, which would suit a paramagnetic behavior, underlining the assumption that T_c is close to 20 K. As the temperature decreases from 20 to 5 K a remanent and a coercive field are observed, but the spin flips are smooth and progress in one step. The coercive field is larger than that in case of the dc and ac χ data, thus explaining the observed domain-like spin structure below T_c . In contrast, the magnetization data recorded at 2 K reveal a twostep process, although the size of the polarization at the highest field does not change on going from 20 to 2 K. The absolute magnitude of the polarization is decisive for the spin ground state: a value of 0.75 μ_B (Figure 5) of theoretically 3 μ_B points to a ferri- or canted antiferro-magnetic ground state, which agrees with the fact that a negati[ve](#page-3-0) $\theta_{\rm CW}$ and a T_c (not a T_N) are observed. In tetragonal $Co₂PO₄OH$, for $Co²⁺$ there is only one crystallographically independent site (Wyckhoff symbol 8c). Thus, assuming that no temperature-dependent structural transition is involved, the occurrence of a ferrimagnetic state is not likely as in that case an uneven contribution of magnetic moment of at least two crystallographically independent Co^{2+} sites is necessary. Thus, with only one crystallographic site present a canted antiferromagnetic spin order as the ground state is more likely.

The crystal structure of $Co₂PO₄OH$ features columns of tilted $[CoO_4(OH)_2]$ octahedra face-shared by three oxygen atoms, running along the $a (= b)$ axes (Figure 5). From the structure, two magnetic coupling paths can be identified: (i) the coupling along the columns and (ii) the couplin[g b](#page-3-0)etween the columns. The observed competing magnetic interactions thus can be explained if (i) is of a ferromagnetic and (ii) is of an antiferromagnetic nature (or vice versa). The magnetic structure of orthorhombic Co₂PO₄OH contains ferromagnetic columns, as determined by neutron scattering.³⁰ Hence, all columns in the tetragonal modification are assumed to contain parallel coupled spins, and the $4₁$ screw axis is co[nf](#page-5-0)orming to a continuously rotating spin direction from one column to the next along the unique axis (inset, Figure 5).

Without further data, it is difficult to interpret the two steps in the 2 K magnetization data (Figure 5[\),](#page-3-0) especially from an isotropic powder. However, a complex spin-flip transition along a single crystallographic easy axis appea[rs](#page-3-0) unlikely. Hence, it is fair to assume that the complex transition involves two components: one along the unique crystallographic axis (c) and a second perpendicular to it. Note that any in-plane ferromagnetic component has to break the tetragonal symmetry, and such a transition should be of first order, that is, hysteretic. Therefore it is possible to postulate that the hysteretic part of the transition belongs to a spin-flip in-plane (Lc) component, and the nonhysteretic part is related to a spin-flop component oriented along the unique axis $(||c)$, shown in the lower-right inset in Figure 5. The size of the magnetization parts naturally corresponds to the relative amount of spins that are flipped or flop[ped](#page-3-0), but more data are necessary to confirm these assumptions. However, by flipping one spin out of four within the ab plane, the magnetization changes by 0.75 μ_B (3 μ_B /4), which agrees quite well with the observations, considering that the measured sample is a powder with all crystallographic directions statistically equally represented. Neutron diffraction data would be necessary to fully understand the spin structure in tetragonal $Co_2(PO_4)OH$, and these investigations are planned in the near future.

■ CONCLUSIONS

A new framework cobalt phosphate, $Co₂PO₄OH$, has been successfully prepared under ionothermal conditions, using the IL 1-butyl-1-methylpyridinium hexafluorophosphate, $[C_4mpy]$ - $[PF_6]$, as the solvent and mineralizer. To allow for the determination of optical and magnetic behavior, phase-pure materials were obtained, and the optimal synthesis conditions were found by varying the stoichiometry of the reagents. $Co₂PO₄OH$ crystallizes in the tetragonal space group I4₁/amd. It is built up by face-sharing Co octahedra chains parallel to the a and b axes, which are arranged in a simple cubic rod packing. The rods are linked through tribridging $O(2)$ H atoms linking the Co octahedra to six-membered rings. Finally, $PO₄$ tetrahedra interconnect four chains of $CoO₄(OH)₂$ octahedra. Further analytical methods such as FT-IR and UV−vis spectroscopy corroborate the crystal structure found. $Co₂PO₄OH$ stays thermally stable up to 400 $°C$ in air. Magnetic susceptibility measurements show paramagnetic behavior near room temperature but an anomaly at about 20 K, which may be the compound's Curie temperature (T_c) . A ferromagnetic moment arises below this temperature. Following the Curie−Weiss fit, considerations of crystallographic site occupancies of Co^{2+} , two magnetic coupling paths can be identified: one ferromagnetic along the columns and another antiferromagnetic between the columns. The spin ground state is probably canted antiferromagnetic. The magnetization curve observed at 2 K consists of a combination of a spin-flip and a spin-flop transition. Neutron diffraction measurements are necessary to unveil the magnetic structure-related details unambiguously.

■ ASSOCIATED CONTENT

6 Supporting Information

Cif file, atomic parameter, X-ray diffraction pattern, TG curve, thermal ellipsoid plot, and atomic label schemes of compound 1. This material is available free of charge via the Internet at http://pubs.acs.org.

■ [AUTHOR INF](http://pubs.acs.org)ORMATION

Corresponding Author

*E-mail: anja.mudring@rub.de, mudring@iastate.edu. Phone: +49(0)234-32-27408. Fax: +49(0)234-32-14951.

Notes

The auth[ors](mailto:anja.mudring@rub.de) [declare](mailto:anja.mudring@rub.de) [no](mailto:anja.mudring@rub.de) [compe](mailto:anja.mudring@rub.de)ting fi[nancial](mailto:mudring@iastate.edu) [interest.](mailto:mudring@iastate.edu)

■ ACKNOWLEDGMENTS

This Work is supported by the Deutsche Forschungsgemeinschaft (DFG) through SFB 608 and the Cluster of Excellence RESOLV. We thank Dr. P. S. Campbell for proof reading.

■ REFERENCES

(1) Huminicki, D. M. C.; Hawthorne, F. C. Rev. Mineral. Geochem. 2002, 48, 123−253.

- (2) Pan, Y.; Fleet, M. E. Rev. Mineral. Geochem. 2002, 48, 13−50.
- (3) (a) Lii, K.-H.; Huang, Y.-F.; Zima, V.; Huang, C.-Y.; Lin, H.-M.; Jiang, Y.-C.; Ling, F.; Wang, L. Chem. Mater. 1998, 10, 2599−2609. (b) Fur, E. Le; Riou, A.; Pena, O.; Pivan, J. Y. Solid State Sci. 2000, 2,
- 135−141. (4) Bhaumik, A.; Inagaki, S. J. Am. Chem. Soc. 2001, 123, 691−696.
- (5) Yu, D. H.; Wu, C.; Kong, Y.; Xue, N. H.; Guo, X. F.; Ding, W. P. J. Phys. Chem. C 2007, 111, 14394−14399.
- (6) Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Acc. Chem. Res. 2007, 36, 770−818, and references therein.
- (7) Stucky, G. D.; Phillips, M. L. F.; Gier, T. E. Chem. Mater. 1989, 1, 492−509.
- (8) Masquelier, C.; Croguennec, L. Chem. Rev. 2013, 113, 6552− 6591.
- (9) Hogarth, C. A.; Basha, M. J. J. Phys. D: Appl. Phys. 1983, 16, 869− 878.
- (10) (a) Lee, W. H.; Seo, Y.; Bishop, P. L. Sens. Actuators, B 2009, 137, 121−128. (b) Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Chem. Soc. Rev. 2009, 38, 109−114. (c) Dimesso, L.; Foerster, C.; Jaegermann, W.; Khanderi, J. P.; Tempel, H.; Popp, A.; Engstler, J.;

Inorganic Chemistry Article

Schneider, J. J.; Sarapulova, A.; Mikhailova, D.; et al. Chem. Soc. Rev. 2012, 41, 5068−5080.

(11) (a) Feng, P.; Bu, X.; Stucky, G. D. Nature 1997, 388, 735. (b) Bu, X.; Feng, P.; Stucky, G. D. Science 1997, 278, 2080−2085.

(12) (a) Choudhury, A.; Neeraj, S.; Natarajan, S.; Rao, C. N. R. Angew. Chem., Int. Ed. 2000, 39, 3091−3093. (b) Chiang, R.-K. Inorg. Chem. 2000, 39, 4985−4988. (c) Chang, W. K.; Chiang, R. K.; Jiang, Y. C.; Wang, S. L.; Lee, S. F.; Lii, K. H. Inorg. Chem. 2004, 43, 2564− 2568. (d) Karmakar, D.; Yakhmi, J. V. J. Phys.: Condens. Matter 2012, 24, 436003/1−436003/9.

(13) (a) Chen, J. S.; Jones, R. H.; Natarajan, S.; Hursthouse, M. B.; Thomas, J. M. Angew. Chem., Int. Ed. 1994, 33, 639−640. (b) Natarajan, S.; Neeraj, S.; Choudhury, A.; Rao, C. N. R. Inorg. Chem. 2000, 39, 1426−1433. (c) Yuan, H. M.; Chen, J. S.; Zhu, G. S.; Li, J. Y.; Yu, J. H.; Yang, G. D.; Xu, R. R. Inorg. Chem. 2000, 39, 1476− 1479. (d) Natarajan, S.; Neeraj, S.; Rao, C. N. R. Solid State Sci. 2000, 2, 87−89.

(14) (a) Lorbeer, C.; Mudring, A.-V. J. Phys. Chem. C 2013, 117, 12229−12238. (b) Campbell, P. S.; Lorbeer, C.; Cybinska, J.; Mudring, A.-V. Adv. Funct. Mater. 2013, 23, 2924−2931. (c) Alammar, T.; Shekhah, O.; Mudring, A.-V. J. Mater. Chem. 2012, 22, 18252− 18260. (d) Richter, K.; Birkner, A.; Mudring, A.-V. Angew. Chem., Int. Ed. 2010, 49, 2431−2435.

(15) Mudring, A. V.; Wang, G. Abstracts of Papers, 243rd National Meeting and Exposition of the American Chemical Society, San Diego, CA, United States, March 25−29, 2012; American Chemical Society: Washington, DC, 2012.

(16) Wang, G.; Mudring, A.-V. Crystals 2012, 1, 22−27.

(17) Wang, G.; Valldor, M.; Lorbeer, C.; Mudring, A.-V. Eur. J. Inorg. Chem. 2012, 18, 3032−3038.

(18) X-Red 1.22, Stoe Data Reduction Program (C); Stoe & Cie GmbH: Darmstadt, Germany, 2001.

(19) X-Shape 1.06, Crystal Optimization for Numerical Absorption Correction (C); Stoe & Cie GmbH: Darmstadt, Germany, 1999.

(20) (a) Sheldrick, W. S. SHELXTL Program, version 5.1; Siemens Industrial Automation, Inc.: Madison, WI, 1997. (b) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112−122.

(21) Keefer, K. D.; Hochella, M. F., Jr.; DeJong, B. H. W. S. Acta Crystallogr. 1981, B37, 1003−1006.

(22) Leblanc, M.; Collin-Fèvre; Férey, G. J. Magn. Magn. Mater. 1997, 167, 71−79.

(23) Waldrop, L. Naturwissenschaften 1968, 55, 178.

(24) O'Keefe, M.; Andersson, S. Acta Crystallogr. 1977, A33, 914− 923.

(25) (a) Pedro, I. de; Rojo, J. M.; Lezama, L.; Rojo, T. Z. Anorg. Allg. Chem. 2007, 633, 1847-1852. (b) Pedro, I. de; Rojo, J. M.; Fernández, J. R.; Lezama, L.; Rojo, T. Eur. J. Inorg. Chem. 2010, 2514−2522.

(26) (a) Hill, R. M.; Ichiki, S. K. J. Chem. Phys. 1968, 48, 838−842.

(b) Hammer, V. M. F.; Libowitzky, E.; Rossman, G. R. Am. Mineral. 1998, 83, 569−576.

(27) Nakamoto, K. In Infrared and Raman Spectroscopy of Inorganic and Coordination Compounds Part B, 6th ed.; John Wiley & Sons: New York, 2009, P62.

(28) Bontchev, R. P.; Iliev, M. N.; Dezaneti, L. M.; Jacobson, A. J. Solid State Sci. 2001, 3, 133−142.

(29) McClure, D. S. Solid State Phys. 1959, 9, 399−525.

(30) Rojoetal Rojo, J. M.; Mesa, J. L.; Lezama, L.; Pizarro, J. L.; Arriortua, M. I.; Rodriguez Fernandez, J.; Barberis, G. E.; Rojo, T. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 66, 094406/1− 094406/13.